The role of photon scattering in optical signal distortion during arrhythmia and defibrillation.

نویسندگان

  • Martin J Bishop
  • Blanca Rodriguez
  • Fujian Qu
  • Igor R Efimov
  • David J Gavaghan
  • Natalia A Trayanova
چکیده

Optical mapping of arrhythmias and defibrillation provides important insights; however, a limitation of the technique is signal distortion due to photon scattering. The goal of this experimental/simulation study is to investigate the role of three-dimensional photon scattering in optical signal distortion during ventricular tachycardia (VT) and defibrillation. A three-dimensional realistic bidomain rabbit ventricular model was combined with a model of photon transport. Shocks were applied via external electrodes to induce sustained VT, and transmembrane potentials (V(m)) were compared with synthesized optical signals (V(opt)). Fluorescent recordings were conducted in isolated rabbit hearts to validate simulation results. Results demonstrate that shock-induced membrane polarization magnitude is smaller in V(opt) and in experimental signals as compared to V(m). This is due to transduction of potentials from weakly polarized midmyocardium to the epicardium. During shock-induced reentry and in sustained VT, photon scattering, combined with complex wavefront dynamics, results in optical action potentials near a filament exhibiting i), elevated resting potential, ii), reduced amplitude relative to pacing, and iii), dual-humped morphologies. A shift of up to 4 mm in the phase singularity location was observed in V(opt) maps when compared to V(m). This combined experimental/simulation study provides an interpretation of optical recordings during VT and defibrillation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpreting Optical Mapping Recordings in the Ischemic Heart: A Combined Experimental and Computational Investigation

The occlusion of a coronary artery results in myocardial ischemia, significantly disturbing the heart’s normal electrical behavior, with potentially lethal consequences, such as sustained arrhythmias. Biologists attempt to shed light on underlying mechanisms with optical voltage mapping, a widely used technique for non-contact visualization of surface electrical activity. However, this method s...

متن کامل

Effects of Temperature on Radiative Properties of Nanoscale Multilayer with Coherent Formulation in Visible Wavelengths

During the past two decades, there have been tremendous developments in near-field imaging and local probing techniques. Examples are the Scanning Tunneling Microscope (STM), Atomic Force Microscope (AFM), Near-field Scanning Optical Microscope (NSOM), Photon Scanning Tunneling Microscope (PSTM), and Scanning Thermal Microscope (SThM).Results showed that the average reflectance for a dopant con...

متن کامل

Signal Optimization During Radio Links Between a Transmitter and a Receiver Located in Adjacent Material Media with Differing Optical Densities (TECHNICAL NOTE)

Signal optimization is affected during radio links between a transmitter and a receiver located in adjacent material media with differing optical densities. The optimization is carried out via the automated control theory method. The radio signal obtained after the optimization is coordinated with the two media's electrical characteristics simultaneously; and this enables low power and small an...

متن کامل

The Role of Factors Influencing the Optical Properties of Yttrium Aluminum Garnet Ceramic Body

Yttrium Aluminum Garnet (Y3Al5O12) is a transparent ceramic with a wide range of applications such as high mechanical strength windows, high power laser sources and radiation detectors. The most important challenge in making these ceramics is the problem of low light transmittance, especially in the visible area in the range of 400 to 700 nm, which is greatly affected and reduced by various fac...

متن کامل

Simulating photon scattering effects in structurally detailed ventricular models using a Monte Carlo approach

Light scattering during optical imaging of electrical activation within the heart is known to significantly distort the optically-recorded action potential (AP) upstroke, as well as affecting the magnitude of the measured response of ventricular tissue to strong electric shocks. Modeling approaches based on the photon diffusion equation have recently been instrumental in quantifying and helping...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 93 10  شماره 

صفحات  -

تاریخ انتشار 2007